\(\int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx\) [124]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 290 \[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}-\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a d \sqrt {e \tan (c+d x)}} \]

[Out]

-1/2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a/d*2^(1/2)/e^(1/2)+1/2*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1
/2)/e^(1/2))/a/d*2^(1/2)/e^(1/2)-1/4*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2^(1/2)/e
^(1/2)+1/4*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2^(1/2)/e^(1/2)+1/3*(sin(c+1/4*Pi+d
*x)^2)^(1/2)/sin(c+1/4*Pi+d*x)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sec(d*x+c)*sin(2*d*x+2*c)^(1/2)/a/d/(e*tan
(d*x+c))^(1/2)+2/3*e*(1-sec(d*x+c))/a/d/(e*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3973, 3967, 3969, 3557, 335, 217, 1179, 642, 1176, 631, 210, 2694, 2653, 2720} \[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} a d \sqrt {e}}-\frac {\log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {\log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{3 a d \sqrt {e \tan (c+d x)}} \]

[In]

Int[1/((a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]),x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]]/(Sqrt[2]*a*d*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c
 + d*x]])/Sqrt[e]]/(Sqrt[2]*a*d*Sqrt[e]) - Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c + d*x]]]/
(2*Sqrt[2]*a*d*Sqrt[e]) + Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]]/(2*Sqrt[2]*a*d*Sq
rt[e]) + (2*e*(1 - Sec[c + d*x]))/(3*a*d*(e*Tan[c + d*x])^(3/2)) - (EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*
Sqrt[Sin[2*c + 2*d*x]])/(3*a*d*Sqrt[e*Tan[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2694

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3967

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-(e*Cot[c
+ d*x])^(m + 1))*((a + b*Csc[c + d*x])/(d*e*(m + 1))), x] - Dist[1/(e^2*(m + 1)), Int[(e*Cot[c + d*x])^(m + 2)
*(a*(m + 1) + b*(m + 2)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1]

Rule 3969

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(e*
Cot[c + d*x])^m, x], x] + Dist[b, Int[(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x]

Rule 3973

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {e^2 \int \frac {-a+a \sec (c+d x)}{(e \tan (c+d x))^{5/2}} \, dx}{a^2} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}+\frac {2 \int \frac {\frac {3 a}{2}-\frac {1}{2} a \sec (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx}{3 a^2} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\int \frac {\sec (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx}{3 a}+\frac {\int \frac {1}{\sqrt {e \tan (c+d x)}} \, dx}{a} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}+\frac {e \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (e^2+x^2\right )} \, dx,x,e \tan (c+d x)\right )}{a d}-\frac {\sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}} \, dx}{3 a \sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)}} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}+\frac {(2 e) \text {Subst}\left (\int \frac {1}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d}-\frac {\left (\sec (c+d x) \sqrt {\sin (2 c+2 d x)}\right ) \int \frac {1}{\sqrt {\sin (2 c+2 d x)}} \, dx}{3 a \sqrt {e \tan (c+d x)}} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a d \sqrt {e \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d}+\frac {\text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{a d} \\ & = \frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a d \sqrt {e \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 a d}+\frac {\text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 a d}-\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}} \\ & = -\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a d \sqrt {e \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}} \\ & = -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}-\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {2 e (1-\sec (c+d x))}{3 a d (e \tan (c+d x))^{3/2}}-\frac {\operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a d \sqrt {e \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.24 (sec) , antiderivative size = 1253, normalized size of antiderivative = 4.32 \[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\frac {2 e^{-i (c+d x)} \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (1+e^{2 i (c+d x)}\right ) \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (2 c) \sec (c+d x) \sqrt {\tan (c+d x)}}{3 d (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}+\frac {e^{-2 i c} \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (e^{4 i c} \sqrt {-1+e^{4 i (c+d x)}} \arctan \left (\sqrt {-1+e^{4 i (c+d x)}}\right )+2 \sqrt {-1+e^{2 i (c+d x)}} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right ) \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (2 c) \sec (c+d x) \sqrt {\tan (c+d x)}}{2 d \left (-1+e^{2 i (c+d x)}\right ) (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}+\frac {e^{-2 i c} \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (\sqrt {-1+e^{4 i (c+d x)}} \arctan \left (\sqrt {-1+e^{4 i (c+d x)}}\right )+2 e^{4 i c} \sqrt {-1+e^{2 i (c+d x)}} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right ) \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (2 c) \sec (c+d x) \sqrt {\tan (c+d x)}}{2 d \left (-1+e^{2 i (c+d x)}\right ) (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}-\frac {e^{-i (2 c+d x)} \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (3 \left (-1+e^{4 i (c+d x)}\right )+e^{4 i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1-e^{4 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{4 i (c+d x)}\right )\right ) \sec (2 c) \sec (c+d x) \sqrt {\tan (c+d x)}}{3 d \left (-1+e^{2 i (c+d x)}\right ) (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}+\frac {e^{-i d x} \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (3-3 e^{4 i (c+d x)}+e^{2 i (c+2 d x)} \left (-1+e^{2 i c}\right ) \sqrt {1-e^{4 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{4 i (c+d x)}\right )\right ) \sec (2 c) \sec (c+d x) \sqrt {\tan (c+d x)}}{3 d \left (-1+e^{2 i (c+d x)}\right ) (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (c+d x) \left (-\frac {4}{3 d}+\frac {2 (3-2 \cos (c)+3 \cos (2 c)) \cos (d x) \sec (2 c)}{3 d}+\frac {2 \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 d}-\frac {2 \sec (2 c) (-2 \sin (c)+3 \sin (2 c)) \sin (d x)}{3 d}\right ) \tan (c+d x)}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}+\frac {4 \sqrt [4]{-1} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ),-1\right ) \sec ^4(c+d x) \sqrt {\tan (c+d x)}}{3 d (a+a \sec (c+d x)) \sqrt {e \tan (c+d x)} \left (1+\tan ^2(c+d x)\right )^{3/2}} \]

[In]

Integrate[1/((a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]),x]

[Out]

(2*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*Cos[c/2 + (d*x)
/2]^2*Sec[2*c]*Sec[c + d*x]*Sqrt[Tan[c + d*x]])/(3*d*E^(I*(c + d*x))*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]
) + (Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(E^((4*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*
x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]] + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*A
rcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^2*Sec[2*c]*Sec[c + d*x]
*Sqrt[Tan[c + d*x]])/(2*d*E^((2*I)*c)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]) +
(Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt
[-1 + E^((4*I)*(c + d*x))]] + 2*E^((4*I)*c)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTa
nh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^2*Sec[2*c]*Sec[c + d*x]*Sqr
t[Tan[c + d*x]])/(2*d*E^((2*I)*c)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]) - (Sqr
t[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*Cos[c/2 + (d*x)/2]^2*(3*(-1 + E^((4*I)*(c + d*x
))) + E^((4*I)*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^
((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]*Sqrt[Tan[c + d*x]])/(3*d*E^(I*(2*c + d*x))*(-1 + E^((2*I)*(c + d*x))
)*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]) + (Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)
))]*Cos[c/2 + (d*x)/2]^2*(3 - 3*E^((4*I)*(c + d*x)) + E^((2*I)*(c + 2*d*x))*(-1 + E^((2*I)*c))*Sqrt[1 - E^((4*
I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]*Sqrt[Tan[c + d*x]]
)/(3*d*E^(I*d*x)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]) + (Cos[c/2 + (d*x)/2]^2
*Sec[c + d*x]*(-4/(3*d) + (2*(3 - 2*Cos[c] + 3*Cos[2*c])*Cos[d*x]*Sec[2*c])/(3*d) + (2*Sec[c/2 + (d*x)/2]^2)/(
3*d) - (2*Sec[2*c]*(-2*Sin[c] + 3*Sin[2*c])*Sin[d*x])/(3*d))*Tan[c + d*x])/((a + a*Sec[c + d*x])*Sqrt[e*Tan[c
+ d*x]]) + (4*(-1)^(1/4)*Cos[c/2 + (d*x)/2]^2*EllipticF[I*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]], -1]*Sec[c +
d*x]^4*Sqrt[Tan[c + d*x]])/(3*d*(a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]*(1 + Tan[c + d*x]^2)^(3/2))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.75 (sec) , antiderivative size = 611, normalized size of antiderivative = 2.11

method result size
default \(-\frac {\sqrt {2}\, \left (3 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-8 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+3 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+3 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+2 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right ) \csc \left (d x +c \right )}{6 a d \sqrt {\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \csc \left (d x +c \right )}\, \sqrt {-\frac {e \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(611\)

[In]

int(1/(a+a*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6/a/d*2^(1/2)*(3*I*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+
c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))-3*I*(csc(d*x+c)-cot(d*x+c)+1)^(1/2
)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2)
,1/2+1/2*I,1/2*2^(1/2))-8*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(
d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2))+3*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*cs
c(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*
I,1/2*2^(1/2))+3*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(
1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))+2*(1-cos(d*x+c))^3*csc(d*x+c)^3-2*csc(d
*x+c)+2*cot(d*x+c))*(1-cos(d*x+c))/((1-cos(d*x+c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)/((1-cos(d*x+c))
*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*csc(d*x+c))^(1/2)/(-e/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-cot(d*x+c)+csc(d*
x+c)))^(1/2)*csc(d*x+c)

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\frac {\int \frac {1}{\sqrt {e \tan {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {e \tan {\left (c + d x \right )}}}\, dx}{a} \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*tan(c + d*x))*sec(c + d*x) + sqrt(e*tan(c + d*x))), x)/a

Maxima [F]

\[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {e \tan \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sec(d*x + c) + a)*sqrt(e*tan(d*x + c))), x)

Giac [F]

\[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {e \tan \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)*sqrt(e*tan(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )}{a\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

[In]

int(1/((e*tan(c + d*x))^(1/2)*(a + a/cos(c + d*x))),x)

[Out]

int(cos(c + d*x)/(a*(e*tan(c + d*x))^(1/2)*(cos(c + d*x) + 1)), x)